Interpreting Botanical ProgressProstaglandins and Related Substances in Plants E. G. and A. J. Groenewald van der Westhuizen....................199 Is Separating Resource Competition from Allelopathy Realistic? Inderjit and Roger del Moral....................................221 Taxonomic Affinities of Physena (Physenaceae) and Asteropeia (Theaceae) Cynthia M. Morton, Kenneth G. Karol, and Mark W. Chase...........231 Dynamics of Leaf Litter Accumulation and Its Effects on Riparian Vegetation: A Review Shaojun Xiong and Christer Nilsson...............................240 Occurrence of Endodermis with a Casparian Strip in Stem and Leaf Nels R. Lersten..................................................265 Mineral Nutrition of Carnivorous Plants: A Review Lubomír Adamec...................................................273
New Books Received..................................................300 Order FormE.G. Groenewald and A.J. van der Westhuizen Department of Botany and Genetics University of the Orange Free State PO Box 339 Bloemfontein, 9300 South AfricaI. Abstract/Zusammenfassung II. Introduction A. Abreviations Used Frequently in This Review III. Discovery of Prostaglandins in Plants A. In the Onion B. In a Red alga C. In Poplar and Larch D. In Prokaryotic Organisms E. In Yeasts F. In Oenothera stricta G. In Bryophytes H. In Pharbitis nil and Kalanchoe blossfeldiana IV. Enzymes responsible for synthesis of Prostaglandins A. In Soybean and Allium species B. In Aloe vera C. In Corn Leaf Homogenates V. Occurrence of Prostaglandin precursors in Plants A. In Algae B. In Bryophytes C. In Wheat Germ Oil and Poplar D. In Garlic E. In Aloe vera F. In Yeast VI. Unsaturated Polyhydroxy Fatty acids with PG-like activity A. In Roots of Bryonia alba B. In the Onion VII. Prostaglandin-like Compounds A. In Flax Seed Extract B. In Chromolaena morii C. In Aquatic Sedge III. Possible physiological roles of Prostaglandins A. Flowering of Pharbitis nil 1. Effect of Inhibitors on Flowering of Intact Plants 2. Effect of PG's, Arachidonic Acid and Inhibitors on Excised Apices 3. Hypothesis for the Control of Flowering 4. Prostaglandin in Flowering Pharbitis nil and Kalanchoe blossfeldiana B. Ascosporogenesis of Yeast is Repressed by Prostaglandin Inhibitors C. Gibberellic Acid Controlled Responses D. Cyclic-AMP Related Response E. Photosynthesis 1. Effect on Isolated Chloroplasts 2. Effect on Corn Leaf Segments F. Plant Bioassay Systems 1. Effect on Three Tissue Elongation Tests and a Stomatal Aperture Test 2. Effect on Two Tissue Elongation Tests and a Seed Germination Test G. Membrane Permeability 1. Effect on Leaflet Movements 2. Effect of Electrofusion of Mesophyll Protoplasts H. Steroids 1. Effect of PG-inhibitors and cortisol on plant growth IX. Conclusion X. Acknowledgements XI. Literature Cited
I. Abstract Prostaglandins (PG's) have been detected in many different plants and certain microorganisms. A few prostaglandin-like compounds have also been shown to occur in plants such as flax, Chromolaena morii, and aquatic sedge; and direct precursors (arachidonic acid, di-homo-(-linolenic acid and eicosapentaenoic acid) have been detected in a variety of plants and microorganisms, including certain red algae, brown algae, green algae and saltwater diatoms. Furthermore, arachidonic acid has been found in mosses and a liverwort. It has been also reported that arachidonic acid occurs in certain angiosperms namely poplar (Populus balsamifera), wheat germ oil, Aloe vera and Allium sativum (garlic).In our studies on the possible physiological effects of prostaglandins we found that a prostaglandin possibly has an effect on the flowering of the short-day plant Pharbitis nil. It has hastened flower formation by 28 days as compared with controls under inductive conditions (short days), and certain inhibitors of PG-biosynthesis inhibited flowering to a greater or lesser extent.
In other physiological studies of prostaglandins it was found that they have an effect on such aspects as GA3 controlled responses in barley endosperm, inhibition of crown gall tumor formation on potato discs and certain electron flow reactions in isolated chloroplasts. In corn-leaf segments it has an effect on photosynthesis, nucleic acid metabolism and protein synthesis. The effect on four plant bioassay systems was negligible. It has also been reported that PG's play a role in the regulation of cell membrane permeability.
Zusammenfassung Prostaglandine (PGs) wurden in vielen verschiedenen Pflanzen und in gewissen Mikroorganismenentdeckt.
Auch ein paar prostaglandinenverwandte Verbindungen wurden im Flachsextrakt und in aquatischer Binse nachgewiesen; direkte Vorläufer (Arachidonsäure, dihomo-(-Linolensäure und Eicosapentaensäure) wurden in einer Vielzahl von Pflanzen und Mikroorganismen entdeckt, auch in gewissen Rot-, Braun- und Grünalgen und Salzwasserdiatomeen. Darüberhinaus wurde Arachidonsäure in Moosen und in einem Lebermoos nachgewiessen. Aufgrund von Berichten kommt Arachidonsäure in gewissen Angiospermen, nämlich der Pappel (Populus balsamifera), im Weizenkeim - Oel, Aloe vera und Allium sativum (Knoblauch) vor.
In unseren Studien über mögliche physiologische Effekte von Prostaglandinen fanden wir, dass ein Prostaglandin möglicherweise das Blühen der Kurztagpflanze Pharbitis nil bewirkt. Es beschleunigt die Blütenbildung um 28 Tage im Vergleich zu einer Kontrollgruppe bei induzierenden Bedingungen (Kurztage), während gewisse Hemmstoffe der PG - Biosynthese die Blütenbildung mehr oder weniger hemmten.
Beim Studium der physiologischen Wirkung der Prostaglandine zeigte sich ein Effekt auf von GA3 kontrollierte Reaktionen im Gerstenendosperm, auf die Hemmung der Bildung von Wurzelhalsgallentumor auf Kartoffelscheiben und auf die Auslösung des Elektronenflusses in isolierten Chloroplasten. In Maisblattstücken zeigte sich eine Wirkung von PG auf Photosynthese, Nukleinsäure-Metabolismus und Proteinsynthese. Die Wirkung auf vier Biotestsystemen ist minimal. Berichten zufolge spielen PGs bei der Regulation der Zellmembranen Permeabilität eine Rolle. Click Here to Go to Back to Top
INDERJIT Department of Botany University of Delhi, Delhi - 110007 INDIA I. Abstract II. Introduction III. Shade IV. Drought V. Nutrients VI. Conclusion VII. Literature CitedI. Abstract Allelopathy and resource competition have often been suggested to explain plant-plant interference. Many studies have attempted to separate these two mechanisms of interference to demonstrate either as a probable cause of an observed growth pattern. We, however, are of the opinion that separating allelopathy from resource competition is essentially impossible in natural systems. Furthermore, any experimental design to separate allelopathy and resource competition will create conditions that will never happen in nature. In this article, the ecological interaction between allelopathy and resource competition in natural systems is discussed. Click Here to Go to Back to Top
Cynthia M. Morton1, 2 Kenneth G. Karol3, 4 and Mark W. Chase1 1Royal Botanic Gardens 2 University of Reading Kew, Richmond Botany Department Surrey TW9 3DS, U.K. Whiteknights, P.O. Box 221 Reading RG6 2AS, U.K 3 Botany Department 4 Department of Biological Sciences Birge Hall DePaul University University of Wisconsin Chicago, IL 60614-3238, U.S.A Madison, WI 53706-1381, U.S.A. I. Abstract II. Introduction III. Materials and Methods IV. Analysis V. Results A. Phylogenetic Analysis of rbcL Sequence Variation VI. Character Comparison of Asteropeia and Physena A. Young Stem B. Wood C. Leaf D. Flowers E. Pollen F. Fruit VII. Concluding Remarks VIII. Acknowledgments IX. Literature CitedI. Abstract Asteropeia and Physena are both enigmatic woody dicotyledons from Madagascar. Various taxonomic affinities have been suggested for both genera, but no consensus has been reached. An analysis of rbcL sequence data strongly supports recognition of the sister group relationship of Asteropeia and Physena and their placement as the sister group to Caryophyllales. Many similarities were noted between Asteropeia and Physena for stem, wood, leaf, flower, pollen and fruit characters. The most notable differences are found in the morphology of the flowers and the anatomy of the wood rays.Click Here to Go to Back to Top
Shaojun Xiong and Christer Nilsson Riparian Ecology Group Department of Ecological Botany Umeå University S-901 87 Umeå, Sweden I. Abstract/Résumé II. Introduction III. Litter Dynamics in the Riparian Zone A. Litter Production B. Litter Redistribution C. Litter Decomposition IV. The Effects of Leaf Litter on Riparian Vegetation A. The Litter Impacts 1. Physical Effects 2. Chemical Effects 3. Biological Effects B. The Effects of Litter on the Plant Community 1. Germination and Establishment 2. Community Productivity 3. Species Richness 4. Community Dynamics V. Concluding Remarks VI. Acknowledgments VII. Literature Cited VIII. Appendix: Litter Production in Riparian Forestsproduction of plant litter and the proportion of leaf litter are higher in riparian corridors than in upland ecosystems throughout the world. Periodical water-level fluctuation is believed to be the major cause of these differences. During flood periods, much plant litter is redistributed locally and between regions, following erosion, transport, and deposition of litter. The importance of litter redistribution varies with factors such as flood regime, topography, and vegetation. Litter from the riparian corridor is usually a major constituent of the litter transported by the river. The decomposition of litter is faster in riparian corridors than in upland systems due to a higher rate of leaching and a higher decomposer activity. Relative warmth and soil fertility may also enhance litter decomposition in riparian corridors. In general, accumulated litter affects plants physically by burying them, chemically by adding nutrients and phytotoxins, and biologically by adding diaspores. The physical impact of a certain amount of litter may be weaker in riparian corridors than in uplands because the rapid decomposition reduces the time that litter is present. In other words, higher amounts of litter are needed to affect riparian vegetation than are needed to affect other types of vegetation. The nutrient content of riverborne litter is reduced by leaching, but dissolved nutrients from litter might still reach the riparian vegetation, e.g., by adsorbing to inorganic particles. Phytotoxins are probably unimportant in riparian systems. The input to the riparian corridor of plant diaspores, borne by litter packs in the river, may be large. Indirect biological effects of litter, including its diaspores, are the attracting of animals and microbes that may influence the plant community, and the creation of bare soil for plant colonization.I. Abstract The total
Résumé La production totale de litière et la proportion de litières de feuilles sont plus importantes dans les ripisylves que dans les autres écosystèmes terrestres de par le monde. Les fluctuations périodiques du niveau de l'eau sont supposées être la cause majeure de ces différences. Durant les périodes de crue, la majeure partie des litières végétales est redistribuée, soit localement, soit régionalement par le biais de processus d'érosion, de transport et de dépôts de crue. L'importance de la redistribution de la litière est variable; elle est fonction du régime des crues, de la topographie et de la végétation. La litière provenant de la végétation riveraine est généralement le constituant majeur de la litière transportée par les cours d'eau. La décomposition des litières est plus rapide dans les ripisylves que dans les écosystèmes terrestres. Ceci est dû à un plus fort taux de lessivage et à une activité de décomposition plus importante dans les sols des ripisylves. La fertilité des sols alluviaux relativement supérieure à celle des sols des autres écosystèmes terrestres ainsi que leur température relativement plus élevée peuvent aussi augmenter la vitesse de décomposition des litières dans les corridors riverains. En général, l'accumulation de litières affecte le développement de la végétation, et ce de plusieurs manières: physiquement par enfouissement, chimiquement par l'ajout de substances nutritives et de phyto-toxines, et biologiquement par l'apport de diaspores. L'impact physique d'un apport de litières peut être moindre dans les corridors riverains que dans les autres écosystèmes terrestres à cause de la rapide décomposition de la litière qui réduit son temps de présence sur le site. En d'autres termes, dans les ripisylves, des quantités de litières plus importantes que dans les autres écosystèmes terrestres sont nécessaires pour affecter le développement de la végétation. La teneur en nutriments des litières de ripisylves est réduite par l'effet du lessivage; cependant des substances nutritives peuvent néanmoins être fournies à la végétation riveraine, par le biais d'adsorption sur des dépôts de sédiments de crue par exemple. Les phyto-toxines sont probablement peu importantes dans les systèmes riverains. Par contre l'apport de diaspores de plantes véhiculés avec la litière dans les cours d'eau peut être très importante. L'effet biologique indirect des litières comprenant ces diaspores concerne leur capacité d'attraction des animaux et des micro-organismes qui peuvent en retour affecter les communautés végétales et créer des trouées de sols nus permettant une nouvelle colonisation végétale.
Click Here to Go to Back to Top
Nels R. Lersten Department of Botany Iowa State University Ames, IA 50011-1020, U.S.A. I. Abstract II. Introduction III. Pteridophytes IV. Gymnosperms V. Angiosperms VI. Conclusions VII. Literature CitedI. Abstract It is well known that an endodermis with casparian strip always occurs in roots, but few people are aware that it also occurs in stems and leaves of some vascular plants. The rather sparse literature on endodermis in aerial organs was last included in a review in 1943. The present compilation, which does not consider hydathodes, nectaries, or other secretory structures, emphasizes distribution of cauline and foliar endodermis with casparian strip. It occurs unevenly among major taxa: quite common in rhizomes and leaves among pteridophyte groups, with exceptions; absent in gymnosperm stems but found in leaves at least among some conifers; in stems of at least 30 mostly herbaceous angiosperm families, but far less common in leaves, where it is mostly reported from petioles. Etiolation can induce casparian strips in stems and petioles of some herbaceous plants, but results from leaf blades are questionable. There are recent reports of an endodermis with casparian strip in leaves of both woody and herbaceous taxa. The physiological function, if any, of a casparian strip in aerial organs remains unknown. Click Here to Go to Back to Top
Lubomír Adamec Institute of Botany Academy of Sciences of the Czech Republic Section of Plant Ecology Dukelská 145 CZ-379 82 T_ebo_ Czech Republic I. Abstract/Zusammenfassung II. Introduction III. Ecological Factors in Habitats of Carnivorous Plants IV. Mineral Nutrition of Carnivorous Plants: General Principles V. Mineral Nutrition of Terrestrial Carnivorous Plants under Greenhouse Conditions A. Conclusions VI. Mineral Nutrition of Terrestrial Carnivorous Plants in Natural Habitats A. Conclusions VII. High-Nutrient Conditions VIII. Mineral Nutrition of Aquatic Carnivorous Plants IX. Organic Nutrition of Carnivorous Plants X. Inspiration for Further Research XI. General Conclusions XII. Acknowledgments XIII. Literature Citedis one of many possible adaptation strategies to unfavorable conditions, mostly low nutrient availability in wet, acid soils. The following issues concerning the mineral nutrition of carnivorous plants are reviewed: the relative importance of carnivory and root nutrition for growth; which nutrients (elements) from prey are of principal importance for growth; the relationship between mineral and organic nutrition based on carnivory; the interactions between carnivore and root mineral nutrition; and the importance of carnivory under natural conditions. Special attention is paid to aquatic carnivorous plants. Studies on mineral nutrition carried out in laboratory and/or greenhouse conditions are discussed separately from those carried out in field conditions. The emphasis of this review is on recapitulation of original data and conclusions of results from a variety of studies that approach carnivorous plants from an ecophysiological point of view.I. Abstract Plant carnivoryZusammenfassung Die Karnivorie der Pflanzen ist eine von mehreren Adaptationsstrategien zu ungünstigen Bedingungen, meist zu niedrigem Nährstoffangebot in feuchten, sauren Böden. Es wird eine Übersicht präsentiert über folgende Fragen der Mineralernährung von karnivoren Pflanzen: die entsprechende Bedeutung der Karnivorie und der Wurzelernährung für das Wachstum; welche Nährstoffe (Elemente) von der Beute prinzipielle Bedeutung für das Wachstum haben; welche Beziehung ist zwischen der anorganischen und organischen Ernährung, die auf der Karnivorie beruht; welche Zwischenbeziehung besteht zwischen der Karnivorie und der Mineralernährung durch Wurzeln; und welche Bedeutung hat die Karnivorie unter natürlichen Bedingungen. Eine besondere Aufmerksamkeit ist den aquatischen karnivoren Pflanzen gewidmet. Untersuchungen über Mineralernährung in Labor- und/oder Gewächshausbedingungen werden gesondert von Ergebnissen diskutiert, die unter Feldbedingungen gewonnen wurden. In dieser Übersicht werden nachdrücklich Originaldaten und Schlussfolgerungen aus Ergebnissen verschiedener Studien rekapituliert, die sich mit karnivoren Pflanzen vom ökophysiologischen Standpunkt befassen. Click Here to Go to Back to Top
NEW BOOKS RECEIVED THE BOTANICAL REVIEW thanks the publishers who have provided books for this listing. Publishers wishing to have their books considered for inclusion in this list should write to THE BOTANICAL REVIEW, New Books Received, The New York Botanical Garden Press, Bronx, NY 10458-5126. Nadine Carozzi and Michael Koziel. 1997. Advances in Insect Control: The Role of Transgenic Plants/ed. (ISBN: 0-7484-0417-1.) xvi, 301 pp. (Taylor & Francis Ltd., 1900 Frost Rd., Suite I 0 1, Bristol, PA 19007). Price: $129.00. Cullen, J. 1997. The Identification of Flowering Plant Families. 4th ed. (ISBN: 0-521-58485-x, cloth; 0-521-58550-3, pb.) xii, 215 pp. (Cambridge University Press, 40 W. 20th St., New York, NY 100114211). Price: $59.95 cloth; $21.95 paper. Leonard J. Francl and Deborah A. Neher. 1997. Exercises in Plant Disease Epidemiology/ed. (ISBN: 089054-2244.) viii, 233 pp., includes 4 disks. (St. Paul, N4N: APS Press, 3340 Pilot Knob Rd., St. Paul, NIN 55121-2097). Price: in U.S. $79.00/non-U.S. $99.00. Meran R. L. Owen and Jan Pen. 1997. Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins/ed. (ISBN: 0-471-96444-1.) xii, 348 pp. (John Wiley & Sons, 605 Third Ave., New York, NY 10158). Price: $56.00 paper. Clodomiro Marticorena and Roberto Rodriguez. 1995. Flora de Chile/ed. Vol. 1: Pteridophyta-Gymnospermae. (ISBN: 956-227-112-9.) xvi, 351 pp. (Proyecto Flora de Chile, Universidad de Concepcion, Depto. de Botanica, Casilla 2407, Concepcion, Chile). Price: US$60.00 cloth. McBumey, Henrietta. 1997. Mark Catesby's Natural History of America: The Watercolors from the Royal Library, Windsor Castle. (ISBN: 1-85894-038-9.) 160 pp. Merrell Holberton Publishers, London. (Distributed in the U.S. by University of Washington Press, P.O. Box 50096, Seattle, WA 981455096). Price: $40.00 cloth. Meffe, Gary K. and C. Ronald Carroll. 1997. Principles of Conservation Biology. 2nd ed. (ISBN: 087893-521-5). 729 pp. (Sinauer Associates, 23 Plumtree Rd., Sunderland, MA 01375-0407). Price: $54.95 cloth. Nellis, David W. 1997. Poisonous Plants and Animals of Florida and the Caribbean. (ISBN: I56164-111-1 cloth; 1-56164-113-8 paper.) xvii, 314 pp. (Pineapple Press, RO. Box 3899, Sarasota, FL 34230). Price: $29.95 cloth; $21.95 paper. R. W. Langhans and T. W. Tibbitts. 1997. Plant Growth Chamber Handbook/ed. (ISSN: 0361-199x.) viii, 240 pp. (lowaagriculture Information Services, 304 Curtiss Hall, Iowa State University, Ames, IA 50011-1050). Price: $15.00 + $3.00 shipping. Russell, Emily W. B. 1997. People and the Land through Time: Linking Ecology and History. (ISBN: 0-300-06830-1.) 308 pp. (Yale University Press, P.O. Box 209040, New Haven, CT 065209040). Price: $35.00 cloth. Schaechter, Elio. 1997. In the Company of Mushrooms: A Biologist's Talc. (ISBN: 0-674-44554-6). xvi, 280 pp. (Harvard University Press, 79 Garden St., Cambridge, MA 02138). Price: $24.95 cloth. Stace, Clive. 1997. New Flora of the British Isles. 2nd ed. (ISBN: 0-521-58933-5.) xxx, 1130 pp. (Cambridge University Press, 40 W. 20th St., New York, NY 100 1 1-421 1). Price: $85.00 cloth. Takhtajan, Armen. 1997. Diversity and Classification of Flowering Plants. (ISBN: 0-231-10098-1.) x, 643 pp. (Columbia University Press, 562 W. 113th St., New York, NY 10027). Price: $95.00 cloth. Uva, Richard H., Joseph C. Neal and Joseph M. DiTomaso. 1997. Weeds of the Northeast. (ISBN: 08014-3391-6 cloth; 0-8014-8334-4 paper.) viii, 397 pp. (Cornell University Press, Sage House, 512 E. State St., Ithaca, NY 14851-0250). Price: $60.00 cloth; $29.95 paper. Van Pelt, Robert. 1996. Champion Trees of Washington State. (ISBN: 0-295-97563-6.) 136 pp. (University of Washington Press, P.O. Box 50096, Seattle, WA 98145-5096). Price: $16.95 paper. Click Here to Go to Back to Top