EvoNet: A Phylogenomic and Systems Biology Approach to Identify Genes Underlying Plant Survival in Marginal, Low-Nitrogen Soils

Dennis Stevenson and collaborators

The purpose of this project is to identify the key molecular players in the development of low-nitrogen tolerance within a water-poor environment by exploiting the genomes of “extreme survivor” plants adapted to marginal, extremely nitrogen-poor soils in the arid Chilean Andes. These extreme survivor species cover the main branches in flowering plants and include seven grass species of particular interest for biofuels, focusing on 24 Chilean species that are relevant to biofuels and their 24 Californian sister species. This project uses a phylogenomic approach and a “paired species” sampling strategy to identify the genes responsible for the divergence of the extreme survivors from their most closely related species growing on arid but nitrogen-replete soils in California. Comparative studies will help to identify the mechanisms underlying physiological and developmental processes that allow efficient capture, assimilation, and remobilization of nitrogen in nitrogen-poor soils. The genes and network modules so uncovered can potentially be translated to biofuel crops to greatly increase biomass and nitrogen use efficiency in marginal, low-fertility soils.